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INTRODUCTION

Computational complexity is the study
of the resources, such as time and space
(memory), required to solve computa-
tional problems. By quantifying these
resources, complexity theory has pro-
foundly affected our thinking about
computation. Computability theory es-
tablishes the existence of undecidable
problems that cannot be solved in prin-
ciple, regardless of the amount of time
invested. In contrast, complexity theory
establishes the existence of decidable
problems that, although solvable in
principle, cannot be solved in practice,
because the time and space required
would be larger than the age and size of
the known universe [Stockmeyer and
Chandra 1979].

The quest for the boundaries of the
set of feasible problems, those solvable
in practice, has led to one of the most
important unresolved questions in com-
puter science: Is P different from NP?
Here P comprises the problems that can
be solved feasibly in polynomial time
and NP comprises the problems whose
solutions can be verified in polynomial
time.

Hundreds of fundamental problems,
including many ubiquitous optimization
problems of operations research, are
NP-complete—they are the hardest
problems in NP. If there is a polynomi-
al-time algorithm for any one NP-com-
plete problem, then there would be poly-
nomial-time algorithms for all of them.
Despite the efforts of many scientists
over several decades, no polynomial-
time algorithm has been found for any

NP-complete problem. Although no one
knows whether P is different from NP,
showing that a problem is NP-complete
provides strong evidence that the prob-
lem is computationally infeasible and
justifies the use of heuristics for solving
the problem.

MODELS OF COMPUTATION

To develop a theory of the difficulty of
computational problems, we need to
specify precisely what a problem is,
what an algorithm is, and what a mea-
sure of difficulty is. For simplicity, com-
plexity theorists represent problems as
languages, model algorithms by Turing
machines, and measure computational
difficulty by the time and space re-
quired by Turing machines. To justify
these choices, some theorems of com-
plexity theory show how to translate
statements about, say, the time com-
plexity of language recognition by Tur-
ing machines into statements about
problems on more realistic computa-
tional models. Thus the principles of
complexity theory are not artifacts of
Turing machines but intrinsic proper-
ties of computation.

A Turing machine is deterministic if
at every point during every computa-
tion, there is at most one possible next
step. A Turing machine is nondetermin-
istic if the machine can have two or
more possible next steps.

A decision problem is a computational
problem whose answer is simply yes or
no. A decision problem can be expressed
as a membership problem for a lan-
guage L that represents the problem:
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for an input word x, does x belong to L?
A Turing machine decides a language L
if for every input word x, the machine
always halts and outputs either yes or
no. For a nondeterministic machine, x €
L if and only if some computation leads
to yes.

COMPLEXITY CLASSES

We measure the complexity of a prob-
lem in terms of the growth of the maxi-
mum required time or space, as a func-
tion of the length n of the input word
that encodes a problem instance. The
complexity class P (respectively, NP)
consists of all languages decided by de-
terministic (nondeterministic) Turing
machines whose running times are
bounded above by a polynomial in n,
such as n® + 2n.

The class P characterizes the compu-
tationally feasible problems robustly: P
remains the same when defined by
other models of sequential computation.

The class NP comprises the lan-
guages whose membership proofs can be
checked in polynomial time. For exam-
ple, one language in NP is the set of
composite numbers, written in binary.
On input z, a nondeterministic Turing
machine for composite numbers guesses
z1 = 2 and z, = 2 and then determinis-
tically computes their product to check
whether z,z, = z. Another language in
NP is the set of satisfiable Boolean for-
mulas, SAT. A Boolean formula ¢ is
satisfiable if there exists a truth assign-
ment of true or false to each variable
such that the resulting value of ¢ is
true. For example, x /\ (& \/ y) is satis-
fiable, but x A\ § /A (¥ \/ y) is not
satisfiable. A nondeterministic Turing
machine for SAT guesses a truth assign-
ment and then deterministically evalu-
ates ¢ for this truth assignment.

NP-COMPLETENESS

A common way to solve a new problem
is to reduce it to a previously solved
problem. Frequently, an instance of the
new problem is formulated completely
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in terms of an instance of the previous
problem.

A language L is NP-complete if L, €
NP and every language in NP can be
reduced to L, in the following sense: for
each L in NP, there exists a function f
computable in polynomial time such
that for every word x, x € L if and only
if flx) € L,. If there is a polynomial-
time algorithm A, to decide member-
ship in L, then there is a polynomial-
time algorithm to decide membership in
L: for an input word x, first compute
f(x), and then run A, on f(x). For exam-
ple, SAT is NP-complete. Consequently,
if deciding SAT is easy (in polynomial
time), then factoring integers is easy—a
surprising connection between ostensi-
bly unrelated problems.

The NP-completeness concept has be-
come pervasive throughout the research
literatures of numerous science and en-
gineering disciplines, because many of
their computational problems are NP-
complete.

RESEARCH ISSUES AND SUMMARY

Research in complexity theory has had
direct applications to many areas of
computer science and mathematics. Re-
cent results on the existence of probabi-
listically checkable proofs imply that ob-
taining approximate solutions to NP-
complete problems can be as difficult as
solving them exactly. Complexity classes
provide new tools for studying questions
in finite model theory, a branch of math-
ematical logic: some questions about logi-
cal expressibility are equivalent to open
questions about relationships among
complexity classes. Fundamental ques-
tions in complexity theory are intimately
linked to practical questions about the
use of cryptography for computer secu-
rity, such as the existence of one-way
functions and the strength of public-key
cryptosystems.

Current research in complexity theory
goes well beyond the ideas presented
here. Researchers are characterizing
the power of randomization and interac-
tion; developing a theory of average-
case complexity; studying classes of
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enumeration and optimization prob-
lems; and proving lower bounds on com-
plexity for restricted computational
models.

With precisely defined models and
mathematically rigorous proofs, re-
search in complexity theory will con-
tinue to provide insights into the diffi-
culty of solving real computational
problems.

FURTHER INFORMATION

Recent textbooks on complexity theory
are those by Balcdazar et al. [1995,
1990], by Bovet and Crescenzi [1994],
and by Papadimitriou [1994]. Garey and
Johnson [1979] explain NP-complete-
ness thoroughly, with examples of NP-
completeness proofs and a collection of
hundreds of NP-complete problems.
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